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STABILITY OF FILTRATION OF A GAS–LIQUID MIXTURE

UDC 532.546G. T. Bulgakova, L. A. Kalyakin, and M. M. Khasanov

The stability of steady regimes of filtration of a gas–liquid mixture at pressure lower than the
saturation pressure is studied for the case of a nonmonotonic dependence of the relative phase
permeability of the liquid on the gas saturation. It is shown that periodic self-oscillations can
appear, and their evolution leads to deterministic chaos due to the appearance and destruction
of quasiperiodic motions.

Usually, the isothermal filtration of a gas–liquid mixture at pressure lower than the saturation pressure
is treated within the framework of the Musket–Meres classical model [1], and, in accordance with the experi-
ments of Wyckoff and Botset [2], the relative phase permeabilities (RPP) for the liquid and gas are assumed
to be monotonic functions of saturation. At the same time, Bolotov et al. [3] established that the flow rate
of a gas–liquid mixture increases abnormally in the region of saturation pressure and decreases with further
decrease in pressure, and this cannot be explained within the framework of the classical approach. Bolotov
et al. [3] and Buevich [4] explain this effect by subcritical nucleation (accumulation of tiny gas bubbles in
a porous medium and their subsequent removal), which leads to a reduction in the volume viscosity of the
gas–liquid mixture. However, this reduction is only 10–15%, whereas the flow rate increases by a factor of
2.5–3 [3].

Shagapov [5] explains this effect by the “gas bearing” mechanism. However, he does not consider
stability conditions for steady regimes and does not take into account that the slipping mechanism develops
only in the saturation pressure region [3], where the porous medium is occupied primarily by a liquid with
isolated gas bubbles (nucleation centers). Khasanov [6] studied the stability of motion of gas–liquid systems
under subtransition conditions. He showed that for certain regimes of motion, periodic and stochastic self-
oscillations can appear.

Churaev [7] showed experimentally that gas adsorption by microcapillaries weakens the adhesion of the
liquid to the capillary surface and considerable slip of the liquid occurs even for an absorption layer 0.15 nm
thick. As a result, the relative permeability of the liquid phase exhibits a nonmonotonic behavior. In this
connection, it is of interest to study the effect of the nonmonotonic variation of the RPP of the liquid phase
on the filtration characteristics of the gas–liquid mixture and, possibly, to obtain a quantitative estimate for
this effect.

1. Equations of Unsteady Filtration. We consider the unsteady isothermal filtration of a gas–
liquid mixture, employing the ideas of the theory of filtration of multicomponent systems [8]. For definiteness,
we study filtration of oil with dissolved gas. Ignoring the solubility of the liquid in the gas, we write the
continuity equations for the masses of the phases and components in the one-dimensional case:

∂

∂t
(mρ1s1) +

∂

∂x
(mρ1s1v1) = −J12(2),

∂

∂t
(mρ2s2) +

∂

∂x
(mρ2s2v2) = J12(2),

(1.1)
∂

∂t
(mρ1gs1) +

∂

∂x
(mρ1gs1v1) = −J12(2), s1 + s2 = 1.
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Equations (1.1) are written for two phases (1 refers to the liquid phase and 2 refers to the gas phase)
and for two component (1 corresponds to oil and 2 corresponds to the gas). Here si, vi, and ρi are the
saturation, the true flow velocity, and the true density of the ith phase, m is the porosity, g is the mass
concentration the dissolved gas in the oil phase, Jij(k) is the rate of mass transfer per unit volume of the
porous medium for degassing of the liquid, t is time, and x is the space coordinate. The velocity of the ith
phase is defined by the Darcy law

msivi = −kfi
µi

∂p

∂x
, (1.2)

where k is the absolute permeability of the medium, p is the pressure, and fi and µi are the relative phase
permeability and viscosity of the ith phase.

It is usual to employ an equilibrium model for filtration of a gas–liquid mixture, in which interphase
exchange is described by the known isotherm of the solubility of the gas in the liquid. In particular, the
phase concentration is described by the Henry solubility isotherm g = ge = αp [α = const and ge(p) is the
equilibrium phase concentration].

We assume that phase transitions are of a nonequilibrium nature. In this case, the mass concentration
of the dissolved gas as a function of pressure is described by the following equation of the nonequilibrium
model:

dg

dt
= −g − ge(p)

τ
, (1.3)

where τ is the relaxation time, dg/dt = ∂g/∂t + v1∂g/∂x is the material derivative, and the velocity v1 is
determined from (1.2).

Equation (1.3) is in qualitative agreement with the well-known experimental data [9]. In the case of
slow variation of the pressure in the system (|dg/dt| � g/τ), where the process is close to an equilibrium
process, we can set dg/dt ≈ 0. Then, Eq. (1.3) reduces to the Henry law. This is also valid for τ = 0, i.e., in
the absence of a delay in the evolution or dissolution of the gas.

To simplify the analysis, we assume that the oil density and the viscosities of the phases are constant:
ρ1, µ1, and µ2 = const. For the model problem, this choice is quite justified since the form of these functions
does not affect the qualitative mechanisms of filtration of the gas–liquid mixture [8]. Assuming that the
evolved gas is perfect, we set ρ2 = ρ2sp/ps, where ρ2s is the gas density at the cross section where gas
evolution starts and ps is the saturation pressure.

The determining relations for (1.1)–(1.3) depend on the phase state of the two-component medium. If
p > ps, the system is in the monophase state and s2 = 0 and J12(2) = 0. For p 6 ps, there is a domain of
local degassing, in which two-phase filtration takes place. The initial and boundary conditions are given by

t = 0, x > 0, p = p0, g = g0
e , (1.4)

t > 0, x = 0, p = p0 > ps, s2 = s = 0, t > 0, x = L, p = pk < ps,

where s is the gas saturation.
System (1.1)–(1.4) describes the filtration of a gas–liquid mixture in the model of a porous material of

length L and with pressure p0 (higher than the saturation pressure) at the entrance and pressure pk (lower
than the saturation pressure) at the exit.

2. Relative Phase Permeability. For completion of system (1.1)–(1.4), it is necessary to specify
the RPP coefficients fi as functions of the gas saturation s. From an analysis of the experimental data of
[3, 7, 10], it follows that the effect of slipping of the liquid is responsible for the nonmonotonic behavior of
the relative permeability of the liquid phase.

Shagapov [5] obtained the relative liquid–phase permeability using the “gas bearing” model, according
to which in the region where gas evolution begins, the gas phase is produced mainly in the layer adjacent to
the pore walls in the porous medium. In the region of contact between the liquid and the solid surface of
the pores there are most favorable conditions for evolution of the gas dissolved in the liquid (because of the
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Fig. 1. Relative phase permeability versus gas saturation:
curves 1 and 2 corresponds to calculations using the method
proposed herein and the method of Wyckoff and Botset [2],
respectively.

presence of nucleation centers). The wall layer of the liquid, which is saturated with gas nuclei, has lower
viscosity than the central layer, and this results in slip flow.

The expression for the relative permeability of the liquid phase obtained in [5] includes viscosity. This
implies the corresponding dependence of the liquid flow rate on the viscosity at the maximum point, which,
however, does not agree with the experiment of [3]. For values µ0 = µ2/µ1 < 0.1, the maximum of the
relative permeability of the oil phase can be attained at values of the gas saturation larger than 50%. The
experiments and numerical calculations of [11] show that these values of the gas saturation correspond to a
reduction in the pressure at the exit from the porous medium to 0.5ps or lower. In this case, gas bubbles
intensify degassing of the liquid in neighboring regions of the pores, and this facilitates the appearance of
continuous gas-saturated pore channels [11]. Gas supply from the ambient liquid ensures the stability of the
channels against capillary dispersion or, at least, fast recovery of their continuity. This leads to an increase
in filtration resistance for the liquid phase and to a decrease in the liquid-flow rate.

Thus, the expression for the RPP function of the liquid given in [5] does not provide a fair fit to
the experimental results of [3, 11], which imply that the maximum of this function must correspond to gas
saturation values not exceeding the critical gas saturation s∗, which characterizes the saturation of the bound
gas. Therefore, we assume that the phase permeability function for the liquid phase has the form shown in
Fig. 1. The relative permeability is given by fi = ki/ki0, where ki0 is the permeability measured for the
phase i when it completely fills the pore volume and ki is the phase permeability.

Experimental studies of the filtration of a gas–liquid mixture through a porous medium [6, 10] show
that once the pressure difference becomes critical, steady filtration regimes lose stability and undamped time
variations in the flow rate of the filtrated liquid are observed. Therefore, we study the stability of steady
filtration regimes for the gas–liquid mixture taking into account the nonmonotonic behavior of the phase
permeability for the liquid phase.

3. Linear Stability Analysis for Steady Regimes. We convert to dimensionless variables:

p̄ =
p

ps
, x̄ =

x

L
, t̄ =

t

t0
, t0 =

µ1L
2m

kps
, µ0 =

µ2

µ1
, ρ̄2 =

ρ2

ρ1
=
ρ2s

ρ1

p

ps
= ρ0p̄,

τ̄ =
τ

t0
, ge =

gs
ps
p = gsp̄, gs = ρ0

(in what follows, the bar is omitted). The steady solutions p0(x), s0(x), and g0(x) are obtained by solving
the system

∂

∂x

[
(1− g)f1(s)

∂p

∂x

]
= 0,

∂

∂x

[(
gf1 + f2

ρ2

µ0

)∂p
∂x

]
= 0,
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f1

1− s
∂p

∂x

∂g

∂x
= −g(p)− gsp

τ

with appropriate boundary conditions. Steady solutions for the filtration of a gas–oil mixture were studied
by Rosenberg et al. [8]. The functions p0(x), s0(x), and g0(x) are not identically constant. We linearize the
initial equations (1.1) for the steady solution, setting s ≈ s0 + s′, p ≈ p0 + p′, and g ≈ g0 + g′ (s′, p′, and
g′ are small perturbations). For s′, p′, and g′, we write the linearized equations

∂t

 s′

p′

g′

+A(x)

 s′

p′

g′

+B(x) ∂x

 s′

p′

g′

+ C(x) ∂2
x

 0
p′

0

 = 0. (3.1)

Here A, B, and C are matrices whose elements are evaluated for the steady solutions s0(x), p0(x), and g0(x).
Next, we study the long-wave solutions of system (3.1) using a simplified version of the Bubnov–

Galerkin method [12]. We expand the solutions and the coefficients of system (3.1) into a Fourier series: s′

p′

g′

 =

 s0(t)
p0(t)
g0(t)

+
∑
k 6=0

exp (2πikx)

 sk(t)
pk(t)
gk(t)

 ,

(A,B,C) = (A0, B0, C0) +
∑
k 6=0

exp (2πikx)(Ak, Bk, Ck).

Substituting these expansions into the initial system (3.1), we obtain a system of ordinary differential
equations for the coefficients of the Fourier series. Taking into account the convergence of the Fourier series
(sk, pk, and gk → 0 as |k| → ∞), we can consider a finite system of differential equations. This system is
simplified by omitting all harmonics except for zeroth ones. This approach corresponds to solutions that vary
slowly in x, i.e., long-wave perturbations. As a result, we obtain the system

dt

 s0

p0

g0

 = A

 s0

p0

g0

 , (3.2)

where the elements of the matrix A are calculated as the mean values in the steady state:

a11 =

1∫
0

[gsp0 − g0

(1− g0)τ
− f ′′1 (s0)s0

xp
0
x − f ′1(s0)p0

xx

]
dx, a12 = −

1∫
0

[1− s0

1− g0

gs
τ

]
dx,

a13 =

1∫
0

[ 1− s0

(1− g0)τ
+

1
1− g0

f1(s0)p0
xx +

1
1− g0

f ′1(s0)s0
xp

0
x

]
dx,

a21 =

1∫
0

[p0

s0
f ′′1 (s0)s0

xp
0
x +

p0 − 1/ρ0

s0(1− g0)τ
(g0 − gsp0) +

p0

µ0s0
f ′′2 (s0)s0

xp
0
x

+
p0

s0
f ′1(s0)p0

xx +
p0

µ0s0
f ′2(s0)p0

xx +
f ′2(s0)
µ0s0

(p0
x)2
]
dx,

a22 =

1∫
0

[gs(p0 − 1/ρ0)(1− s0) + (1− s0)(g0 − gsp0)
s0(1− g0)τ

+
f ′1(s0)
s0

s0
xp

0
x

+
f1(s0)
s0

p0
xx +

f ′2(s0)
µ0s0

s0
xp

0
x +

f2(s0)
µ0s0

p0
xx

]
dx,
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a23 = −
1∫

0

[(p0 − 1/ρ0)(1− s0)
s0(1− g0)τ

+
p0f ′1(s0)

(1− g0)s0
s0
xp

0
x +

p0f1(s0)
(1− g0)s0

p0
xx

+
1

µ0s0(1− g0)
(p0f ′2(s0)s0

xp
0
x + f2(s0)(p0

x)2 + p0f2(s0)p0
xx)
]
dx,

a31 =

1∫
0

[ f0
1

1− s0
p0
xg

0
x +

g0 − gsp0

τ

]
dx, a32 =

gs
τ
, a33 = −1

τ
.

We seek a solution of system (3.2) in the form s0

p0

g0

 =

 α

β

γ

 exp (λt),

where the characteristic numbers λ are obtained from the equation∣∣∣∣∣∣∣∣
a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣∣∣∣∣∣∣∣ = 0. (3.3)

A numerical study of Eq. (3.3) was carried out for p0 = 1.25ps, ps = 10 MPa, and parameter values
from the ranges pk = (0.5–0.9)ps, µ0 = 0.001–0.010 and τ = 0.001–1.0. The analysis shows that the algebraic
equation (3.3) always has three real roots. The number of zeros in the right half-plane is determined by the
parameters ∆p = ps − pk, µ0, and τ . For ∆p 6 0.5 MPa and τ 6 0.001, the linear system is asymptotically
stable for all t. However, in the range of values of the parameter ∆p considered herein, the linear problem is
always unstable since, under these conditions, Eq. (3.3) has at least one positive root. Moreover, if the values
of the parameters ∆p and τ increase, all roots increase and pass through zero, i.e., the instability increment
increases. The character of the instability changes from the “saddle–node” type [one or two roots of (3.3)
are negative] to the “unstable node” type (all three roots are positive). This conclusion is also valid for the
complete linearized system (3.1), at least for solutions with sufficiently small Fourier amplitudes sk, pk, and
gk (k 6= 0). The instability in a linear approximation shows that the equilibrium given by s0(x), p0(x), and
g0(x) is unstable. Self-oscillations can arise and develop when the parameter values change. In calculations
with the RPP function for oil proposed in [5], all real roots of Eq. (3.3) are negative (stable node) and
there are no oscillations in the linear system. This result is confirmed by the calculations presented in [5].
An analytical analysis of the complete equations (1.1) is difficult because of their complexity. Therefore, we
restrict ourselves to numerical calculations.

4. Calculation Results. To analyze the filtration process in the instability region, we solve system
(1.1)–(1.3) numerically using a conservative finite-difference scheme. The pressure distribution in the bed is
calculated from the condition of conservation of mass for the flow using the sweep method for an implicit
four-point scheme. The values obtained are used to calculate the saturation and phase concentration. The
coefficients for the lower layer are used to exclude nonlinearity. The relative permeability of the liquid phase
is chosen in such a way that the maximum of the function corresponds to the gas saturation value s for which
the evolved gas is entirely adsorbed by the pore walls. The gas evolved acquires mobility, forming a bound
phase, at mean gas saturation s = s∗ ≈ 0.1. Therefore, the RPP of the liquid phase decreases to values
smaller than k10.

Steps in time ∆t and coordinate h were chosen from the stability condition for the finite-difference
scheme, so that their further reduction by a factor of two or more did not change the qualitative and
quantitative picture of the calculations. An analysis of the solution on various spatial grids showed that the
stability and sufficient accuracy of the calculations are ensured for h 6 0.01 and ∆t 6 0.0000025. Multivariant
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Fig. 2. Evolution of the attractor of oscillatory mo-
tion for ∆p = 3 MPa, τ = 0.01, and µ0 = 0.01 (a)
and ∆p = 5 MPa, τ = 0.1, and µ0 = 0.001 (b).

Fig. 3. Distributions of the pressure p (solid curves)
and gas saturation s (dashed curve) over the length
of the model for t = 1.2 (1) 2.4 (2), and 3.6 (3).

calculations of the pressure and saturation fields were performed for the following hydrodynamic parameters
of the phases: µ0 = 0.001–0.010, τ = 0.01–1, pk = (0.5–0.9)ps, p0 = (1.1–1.3)ps, µ2 = 0.01 mPa · sec,
gs = 0.11, ρ1 = 700 kg/m3, ρ2 = 68 kg/m3, L = 1 m, k = 0.00095 µm2, and m = 0.2.

The calculations show that in the domain of filtration of the gas–oil mixture, time-periodic changes of
the pressure and saturation occur. The stability region is determined by the parameter µ0 and the pressure
difference ∆p = ps − pk. With µ0 > 0.01, the motion is stable for ∆p∗ 6 0.5 MPa. As µ0 decreases to 0.001,
the critical value ∆p∗ increases to 1 MPa. If 0.001 < µ0 < 0.01 and ∆p > p∗, a periodic self-oscillation
regime arises, which is stable within the above-mentioned range of the parameter µ0. Growth in τ with fixed
pressure difference decreases the mean gas saturation. With increase in the pressure difference at fixed τ ,
the oscillation frequency and amplitude and the mean gas saturation increase. For µ0 6 0.001, an increase
in the pressure difference ∆p to 3 MPa leads to loss of stability of the limiting cycle. As ∆p and relaxation
time τ increase, new types of perturbations appear and quasiperiodic motion arises. The evolution of the
attractor of the oscillatory motion (projections onto the phase planes p ∼ s and p ∼ g) is shown in Fig. 2.
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With further increase in τ , the quasiperiodic oscillations fail and become chaotic (τk.p. = 1). It follows from
the numerical results that the transition to chaos in the system considered occurs via failure of quasiperiodic
motion.

Figure 3 shows distributions of the gas saturation s and pressure p over the length of the model of a
porous medium for various times for pk = 7 MPa, ∆p = 3 MPa, and τ = 0.01. One can see two “jumps”
in the gas saturation distribution. For the first of them, the gas saturation is lower than the equilibrium
value and the evolved gas is motionless, and the second corresponds to the value s ≈ s∗, for which the gas
acquires mobility. Periodic oscillations of the pressure and saturation produce corresponding variations in the
dimensions of the degassing region. Therefore, near the phase-transition front (at p = ps) there is a motionless
gas-phase region. Precisely this region is responsible for nonmonotonic changes in the phase permeability of
the liquid phase, which, ultimately, lead to unstable filtration regimes.
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